США. НОРТ АМЕРИКЕН. ХВ-70 «ВАЛЬКИРИЯ». Экспериментальный самолет

Экспериментальная «трехмаховая» «Валькирия» долгое время была символом прогресса в авиации


Вначале 1950-х годов на вооружение стратегической авиации США поступили средние дозвуковые бомбардировщики Боинг В-47, начались испытания тяжелого дозвукового Боинг В-52. Развивая линию высотных бомбардировщиков в направлении перехода к сверхзвуку, американцы одновременно вплотную приступили к разработке самолета Конвэр В-58. Параллельно развернулись масштабные работы по межконтинентальным крылатым (Норт Америкен «Навахо» и Нортроп «Снарк») и баллистической (Конвэр «Атлас») ракетам, на которые возлагались огромные надежды вплоть до полной замены ими пилотируемых самолетов. Командование стратегической авиации не проявляло особого энтузиазма в отношении В-58, основанного на технологии реактивных самолетов первого поколения. Обладая ограниченными дальностью полета и боевой нагрузкой, он не мог претендовать на роль сверхзвукового эквавалента тяжелой «стратокрепости» В-52. А полноценный сверхзвуковой преемник В-52 считался необходимым, поскольку перспективность межконтинентальных ракет еще предстояло доказать и грядущее долголетие В-52 никто не мог предвидеть.

Отправной точкой работ по новому самолету стало предложение командующего стратегической авиацией ВВС США генерала K.JIeмея, который в конце 1954 г. поднял вопрос о создании нового бомбардировщика, обладающего дальностью без дозаправки в полете не менее 11000 км и «максимально возможной скоростью». Этот самолет, пригодный для эксплуатации с существующих аэродромов, должен был заменить В-52 и состоять на вооружении ВВС в 1965-1975 гг. В октябре 1954 г. было выпущено ТЗ к системе оружия WS-110A и объявлен конкурс предварительных проектов стратегического бомбардировщика с крейсерским числом М=0,9 и максимально возможной скоростью на максимальной высоте при проникновении в воздушное пространство потенциального противника на расстояние 1600…1850 км. Поставки нового самолета намечались с 1963 г. В июле 1955 г. шесть фирм представили предварительные проекты, а 11 ноября этого же года Боинг и Норт Америкен получили заказы на проработку своих эскизных проектов, которые были готовы в апреле следующего года.

Самой трудной проблемой при проектировании WS-110A было одновременное достижение высокой сверхзвуковой скорости и межконтинентальной дальности полета. Для этого требуется получить высокое сверхзвуковое аэродинамическое качество – задача, не решенная полностью и в наши дни. В 1950-х годах трудности усугублялись малой экономичностью имевшихся двигателей, недостаточной изученностью аэродинамики сверхзвуковых скоростей, отсутствием высокопроизводительных ЭВМ для проведения расчетов. В результате оба спроектированных самолета WS-110A имели небывало высокую размерность. Проектом фирмы Норт Америкен предусматривалось создание бомбардировщика массой 340 т с треугольным крылом, к которому крепились дополнительные консоли с расположенными посередине огромными топливными баками. В районе цели консоли с баками, в которых размещалось по 86 т топлива, должны были сбрасываться с последующим разгоном самолета до М=2,3. Фактически это было «звено» из трех аппаратов. Эксплуатировать его с существующих аэродромов не представлялось возможным.


Схема самолета ХВ-70А «Валькирия»


Старт'межконтинентальной крылатой ракеты Нортроп SM-62A «Снарк»


Схема ракеты «Снарк»


Оба представленных проекта были отклонены в октябре 1956 г. и после переработки вновь представлены через девять месяцев – к июлю 1957 г. Проектировщики учли требование ВВС уменьшить взлетную массу. Но, главное, они существенно изменили свои проекты под вновь поставленную задачу обеспечить полностью сверхзвуковой полет. Требовалась дальность до 9600 км с крейсерским числом М=2 и возможностью броска с М=3 в районе цели. ВВС, формулируя новое ТЗ, опирались на рекомендации ученых из NACA (аналог российского ЦАГИ), которые по словам Х.Драйдена, тогдашнего директора NACA, добились к тому времени крупных успехов в изучении аэродинамики, прочности и силовых установок сверхзвуковых самолетов. Был учтен и опыт проектирования фирмой Рипаблик «трехмахового» истребителя перехватчика XF-103, разработка которого была прекращена в том же 1957 г.

Для уменьшения потребного запаса топлива и размерности самолета фирмы Боинг и Норт Америкен решили перейти к борово- дородному топливу, предложенному как горючее еще в 1929 г. в Советском Союзе Ю.В. Кондратюком. Предпочтение отдали пентаборану, хотя исследовались также диборан и декаборан. Пентаборан имеет меньшую плотность, по сравнению с керосином, и, соответственно, занимает больший объем, но, отличаясь высокой теплотой сгорания («высокой калорийностью», как у нас говорили в то время), позволяет снизить массу топлива дальнего самолета. По проекту фирмы Норт Америкен при уменьшенной почти до 200 т взлетной массе крейсерское число М повысилось с дозвукового до 1,52, максимальное число М – до 3, дальность полета 9600 км достигалась на крейсерской высоте 15000 м.

Норт Америкен применила ряд компоновочных мер, направленных на повышение сверхзвукового аэродинамического совершенства. Первым шагом стал традиционный способ – установка цельноповорот- ного переднего оперения, играющего роль дестабилизатора и уменьшающего балансировочное сопротивление самолета на сверхзвуке. Но этого оказалось недостаточно и Норт Америкен пошла на риск, использовав новое оригинальное техническое решение. Идея, которая лежала в основе концепции полностью сверхзвукового бомбардировщика, состояла в повышении подъемной силы за счет сжатия воздушного потока. Она была предварительно апробирована в ходе экспериментальных исследований NACA в 1955-1956 гг., а в проекте Норт Америкен воплощена размещением двигателей в единой подкрыльевой гондоле с применением плоского воздухозаборника, имеющего выдвинутый вперед неподвижный клин. Создаваемая при этом на сверхзвуке система косых скачков уплотнения приводила к образованию области повышенного давления под крылом.


Рисунок экспериментального «трехмахового» перехватчика Рипаблик XF-103, разработка которого была прекращена в 1957 г.


Межконтинентальная крылатая ракета Норт Америкен XSM-64 «Навахо»


Схема ракеты «Навахо»


Еще одним техническим новшеством стали отклоняемые вниз концевые части крыла. Главное их назначение – повышение путевой устойчивости самолета. Это позволило уменьшить размеры килей и способствовало росту аэродинамического качества самолета. Одновременно отклонение концов крыла приводило к перемещению аэродинамического фокуса самолета вперед (благодаря уменьшению эффективной площади крыла вблизи задней кромки) и дополнительному снижению балансировочного сопротивления в сверхзвуковом полете. Кроме того, отклонение концевых частей давало увеличение подъемной силы от сжатия потока, так как скачки уплотнения, создававшиеся клином воздухозаборника, отражались от отклоненных концов, что еще более повышало давление под крылом. Все это дополнительно увеличивало аэродинамическое совершенство самолета.

Проект фирмы Норт Америкен был признан перспективным, 23 декабря 1957 г. она была объявлена победителем конкурса проектов и получила контракт на разработку самолета, которому в феврале следующего года дали

обозначение В-70, а в июле – название «Валькирия». В выборе Норт Америкен сыграло, вероятно, свою роль и желание ВВС поддержать эту фирму, портфель заказов которой к тому времени оскудел (работы по ракете «Навахо» незадолго до этого прекратились, а производство истребителя F-100 «Супер Сейбр» близилось к завершению) и финансовое положение было не в пример хуже, чем у Боинга. Предусматривалась постройка 62 самолетов, из них 12 опытных и 50 строевых, для формирования первого авиакрыла. Первый полет опытного самолета намечался на январь 1962 г., первое авиакрыло планировалось сформировать к августу 1965 г.


Истребитель Норт Америкен F-100 «Супер Сейбр»


F-107A (первоначальное обозначение F-100B) – развитие истребителя F-100. Его разработка была прекращена в 1957 г.


Первое время программа самолета В-70 относилась к числу приоритетных. Однако это продолжалось недолго. Первый сбой был связан с бороводородным топливом. Оно оказалось очень дорогим, высокотоксичным и сложным в производстве. В то же время дальность полета при его использовании увеличивалась, как выяснилось, только на 10%. К весне 1959 г., когда завершилось изготовление макета самолета, по заказу ВВС был построен завод стоимостью 45 млн долл. для производства бороводородного топлива. Но он так и fie был пущен, поскольку в августе этого же года разработка бороводородного топлива и двигателя J95-GE-5, который на нем работал, была аннулирована. Месяцем позже прекратились работы по «трехмаховому» истребителю-перехватчику Норт Америкен F-108 «Рапира», двигатели которого также должны были работать на бороводородном топливе. В результате стоимость разработки В-70 увеличилась, так как часть исследований полета с М=3 предполагалась по программе самолета F-108.

К этому времени успешные запуски первой американской МБР «Атлас» подтвердили перспективность ракетного оружия и поставили под сомнение саму необходимость пилотируемых бомбардировщиков. Но, главное, появление в СССР первых дальних мобильных зенитных ракетных комплексов заставило сделать вывод, что по уязвимости сверхзвуковой В-70 будет ненамного лучше дозвукового В-52. Такое, все более распространявшееся мнение в дальнейшем подтвердилось, но в то время абсолютной уверенности в подобных прогнозах не было и программа самолета В-70 вступила в полосу неопределенности, продолжавшуюся почти пять лет.

Первым ударом стало прекращение в декабре 1959г. разработки В-70 как системы оружия. Новыми планами предусматривалась постройка одного экспериментального ХВ-70 без навигационно-бомбардировочной системы и системы вооружения. ВВС США все же не теряли надежды довести работы по бомбардировщику до серийного производства и в октябре 1960 г. добились восстановления программы разработки самолета, как системы оружия. Однако в апреле 1961 г., после прихода президента Кеннеди на смену Эйзенхауэру, программа была вновь сокращена до постройки трех экспериментальных машин, в том числе двух ХВ-70А без боевых систем и с экипажем из двух человек, а также одного ХВ-70В с навигационной системой, вооружением и экипажем из четырех человек.

Было предложено три пассажирских варианта бомбардировщика (от минимально модифицированного варианта до глубокой модифика – ции), проводились исследования варианта бомбардировщика В-70 с ядерной силовой установкой. В 1960 г. рассматривалась возможность применения самолета В-70 в качестве сохраняемой первой ступени космических J1A и, в частности, для ракетоплана «Дайна Сор», но этот проект был отклонен. В 1962 г. одно время изучалось создание разведчикабомбардировщика RS-70, однако решение было принято в пользу разработки стратегического разведчика Локхид SR-71, а программа ХВ-70 осталась без изменений. Наконец, в марте 1964 г. произошло последнее сокращение программы – до двух двухместных экспериментальных самолетов ХВ-70А без боевых систем. По словам Р.Макнамары, министра обороны в администрации Кеннеди, известного введением критерия «стоимость-эффективность» для оценки оружия: «Мы… пришли к заключению, что В-70 не сможет повысить мощь наступательного оружия настолько, чтобы оправдать его чрезвычайно высокую стоимость. Учитывая все повышающиеся характеристики ракет класса земля-воздух, а также скорость и высоту полета самолета В-70, он не будет иметь существенных преимуществ…, мы планируем завершить сокращенную программу разработки…, продемонстрировать техническую осуществимость конструкции самолета, а также некоторых основных систем, необходимых для полета с большой скоростью и на большой высоте».


Пуск первой межконтинентальной баллистической ракеты Конвэр SM-65 «Атлас»


Схема ракеты SM-65D «Атлас»


Выкатка ХВ-70 из ворот сборочного цеха


Несмотря на исследовательскую направленность работ по ХВ-70А, сохранялась вероятность дооборудования самолета в бомбардировщик в случае изменения обстановки, и в СССР испытания «Валькирии» с полным основанием рассматривались как реальная угроза. Автор книги помнит, что даже в 1966-1967 гг. на занятиях по военной подготовке в средней школе эта машина называлась не экспериментальной, а боевой (причем военрук, вдохновленный вниманием открывших рот юнцов, расписывал зловещей краской характеристики самолета и рисовал с леденящими душу подробностями апокалипсическую картину атомной бомбардировки Союза «Валькирией»).

Трудоемкость инженерно-технических работ по созданию самолета составила 14,5 млн чел.-ч, было израсходовано 1,3 млрд долл. Первому полету самолета предшествовали обширные испытания моделей в аэродинамических трубах, объем которых достиг 14 тыс.ч. Первый самолет ХВ-70 был построен в мае 1964 г. и впервые поднялся в воздух 21 сентября 1964 г. Расчетная скорость, соответствующая числу М=3, была достигнута в 17-м полете 14 октября 1965 г. Второй самолет совершил первый полет 17 июля 1965 г., но просуществовал он менее года: в 46-м полете 8 июня 1966 г. он разбился в результате столкновения с сопровождавшим его истребителем F-104.

Эта случайная трагедия, приведшая к потере многомиллионного самолета, получила широкий резонанс в американской печати. Она произошла в полете, организованном по заказу фирмы Дженерал Электрик для рекламной съемки самолетов, на которых установлены двигатели ее разработки. С фотосъемщика «Лир Джет» планировалось запечатлеть полет строем «клин» пяти самолетов – «Валькирия», Локхид F-104 «Старфайтер», Макдоннелл-Дуглас F-4B «Фантом», Нортроп F-5 «Фридом- файтер» и Т-38 «Талон». Дженерал Электрик просила включить в состав этой группы и бомбардировщик Конвэр В-58 «Хастлер», но ей отказали. Полет управлялся с командного пункта авиабазы Эдварде, поскольку радиооборудование «Лир Джета» и ХВ-70 было несовместимо. Съемки практически уже завершились, когда «Старфайтер», летевший справа от «Валькирии», ударился левым концевым крыльевым баком об отклоненную правую концевую часть ее крыла. Повредив свое левое полукрыло, «Старфайтер» резко наклонился влево и, перевернувшись, скользнул над хвостом «Валькирии», срезав часть ее правого киля и почти полностью снеся левый киль. Своим носом «Старфайтер» также ударил сверху по левой консоли «Валькирии». Сразу после этого «Старфайтер» взорвался, вероятно, из-за того, что топливо, хлынувшее из его разрушенного бака, мгновенно воспламенилось от выхлопных газов «Валькирии». Летчик погиб.


ХВ-70 в сопровождении самолета Нортроп Т-38


Экспериментальный гиперзвуковой самолет Норт Америкен Х-15


Технология, отработанная на «Валькирии», нашла применение в конструкции военно-транспортного самолета Локхид С-5


«Валькирия» продолжала лететь прямо еще 10-15 с, после чего накренилась вправо, опустила нос и вошла в интенсивное движение по рысканию. Часть ее левой консоли отлетела из-за чрезмерной перегрузки, а затем самолет попал в плоский штопор. Первый летчик благополучно спасся, получив небольшие травмы, второй летчик погиб.

45-летний Дж.Уокер (Joseph A. Walker), пилотировавший F-104, был старшим летчиком- испытателем NASA и считался одним из наиболее опытных американских пилотов. При общем налете около 5000 ч он совершил 25 полетов на экспериментальном гиперзвуковом самолете Норт Америкен Х-15, причем установил на нем рекорды скорости и высоты полета. Все же расследовавшая катастрофу комиссия склонилась к мнению, что вероятная причина столкновения – ошибка Уокера, поскольку бортовые системы самолетов работали нормально, атмосфера была спокойной, видимость хорошей, признаков внезапного заболевания у летчиков не обнаружено, а гипотезу, что соударение обусловлено подсосом истребителя вследствие завихрения воздушного потока между ним и «Валькирией», признали несостоятельной. Уокер, по-видимому, выдерживал дистанцию до ХВ-70, визуально контролируя расстояние от своего самолета до передней секции фюзеляжа ХВ-70. Если это так, то крыло «Валькирии» находилось вне поля зрения пилота. «Очевидно, что перемещение F-104 с безопасной дистанции в точку контакта происходило постепенно и не осознавалось летчиком… Наши выводы подтверждаются тем обстоятельством, что в момент соударения F-104 с опущенным концом крыла ХВ-70 голова летчика была ниже уровня продольной оси фюзеляжа ХВ-70 по меньшей мере на 3 м».

Второй летчик «Валькирии» К.Кросс (Carl S.Cross) также был опытным пилотом с общим налетом более 8500 ч, но на «Валькирии» он совершал первый вылет, который для него оказался и последним. Вероятная причина того, что он не смог катапультироваться – попадание ХВ-70 в плоский штопор. Дело в том, что закрытие створок капсулы и ее катапультирование происходили только после предварительного смещения кресла назад давлением сжатого газа. Центробежные силы, возникающие при вращении самолета в плоском штопоре, оказались на «Валькирии» весьма значительными (из-за большого выноса кабины экипажа относительно центра масс самолета) и воспрепятствовали перемещению кресла назад. Аварийная ручная система перемещения кресла также не могла преодолеть действия центробежных сил. Командиру экипажа Э.Уайту (Alvin S. White), шеф-пилоту фирмы Норт Америкен, повезло, так как он рванул рычаг катапультирования в момент кратковременного замедления вращения самолета.


Военно-транспортный самолет Локхид С-141 также создан с использованием технологии от ХВ-70


ХВ-70А взлетает для исследований в полете характеристик будущих сверхзвуковых пассажирских самолетов


Англо-французский сверхзвуковой пассажирский самолет «Конкорд»


Российский сверхзвуковой пассажирский самолет Ту-144 конструкции ОКБ им.А.Н.Туполева


Потеря второй «Валькирии» стала большим ударом для программы скоростных испытаний, так как этот образец самолета был оборудован автоматической системой управления воздухозаборником и летчики именно на нем предпочитали выходить на числа М›2,5. На втором самолете была выполнена оговоренная контрактом задача – продемонстрировать установившийся полет при М=3 продолжительностью не менее 30 м. Полет с М=3, проходивший 19 мая 1966 г. на высоте около 21 км, длился 32 м. Тем самым фирма заработала 275 тыс долл. – вознаграждение, предусмотренное контрактом с ВВС. Испытания оставшегося первого самолета продолжались еще два с половиной года: последний испытательный полет он совершил 17 декабря 1968 г., а 4 февраля 1969 г. был передан в музей ВВС. Налет обоих самолетов составил 249 ч 22 м в 128 полетах, из них более 42% (106 ч 48 м) на сверхзвуковых скоростях и более 20% (51ч 34 мин) при М›2.

Создание самолета ХВ-70 было крупным техническим достижением. Но хотя он и оставил глубокий след в авиации, его роль в основном свелась к освоению авиационной промышленностью новых технологических процессов производства конструкций из высокопрочных сталей и титана, которые были впоследствии применены на бомбардировщике Дженерал Дайнэмикс F-111, военно-транспортных самолетах Локхид С-5 и С-141, истребителе Макдоннелл-Дуглас F-4 и на других самолетах. В то же время компоновка ХВ-70 не стала образцом для последующих сверхзвуковых самолетов, хотя на нем и были предприняты масштабные исследования в рамках изучения сверхзвуковых пассажирских самолетов. Крупный недостаток пакетного размещения двигателей – увеличение массы конструкции из-за большой длины воздушных каналов. Поэтому, например, на англо-французском сверхзвуковом пассажирском самолете «Конкорд» было решено применить более короткие разнесенные гондолы двигателей, установленные под консолями крыла. На российском Ту-144 было применено промежуточное решение – отдельные гондолы, но со сравнительно небольшим разносом и размещением под фюзеляжем. Вообще говоря, установка двигателей под крылом разгружает крыло и таким образом облегчает конструкцию, но в то же время отказ одного двигателя и возникновение несимметрии тяги при сильном разносе двигателей может существенно усложнить пилотирование самолета и обеспечение его путевой устойчивости. Очевидно, конструкторы Ту-144 не пошли на большое разнесение двигателей в целях повышения безопасности полета, не будучи уверены в высокой надежности двигателей.

На ХВ-70 предполагали достичь сверхзвукового аэродинамического качества 8-8,5, дозвукового – около 12-13. Сравнительно высокое крейсерское качество «Конкорда» и Ту-144 – «бесхвосток» без переднего дестабилизатора, было получено благодаря усовершенствованию методов аэродинамического расчета, что позволило применить неплоское крыло оживальной формы в плане.

На Ту-144 реально достигнуто качество 8,1 при М=2, на перспективном сверхзвуковом пассажирском Ту-244, который также проектируется по схеме «бесхвостка», намечается получить качество 10 при М=2 и 15 при М=0,9. Кроме того, Ту-144 и «Конкорд» рассчитаны на меньшие скорости полета, по сравнению с ХВ-70, и выполнены, в основном, из обычных алюминиевых сплавов. США, как известно, так и не создали сверхзвукового пассажирского самолета.


Стратегический высотный «трехмаховый» разведчик Локхид SR-71


Поворотные концы крыла ХВ-70 существенно снижали безопасность полета: при их заклинивании в полностью отклоненном положении самолет не мог совершить безопасную посадку, и экипаж должен был катапультироваться.

В отличие от В-58, который одно время предлагалось модифицировать в маловысотный бомбардировщик, для «Валькирии» подобных предложений не было. Одна из причин этого – ее чрезмерная (на порядок выше, чем у «двухмахового» бомбардировщика В-58 и «трехмахового» разведчика SR-71) чувствительность к турбулентности атмосферы. «Валькирия» обладала таким недостатком несмотря на то, что удлинение крыла у нее было несколько меньше (1,75 в сравнении с 2,1 у В-58 и 1,9 у SR-71). Вызывалось это, главным образом, сравнительно малой жесткостью длинного фюзеляжа, хотя играла роль и малая удельная нагрузка на крыло (410 кг/м2 при максимальной фактической взлетной массе, тогда как у В-58 и SR-71 нагрузка достигала примерно 520 кг/м2 ).

ХВ-70 стал первой за рубежом крупной сверхзвуковой аэроупругой конструкцией. Его большие размеры, применение тонкого треугольного крыла и длинного гибкого фюзеляжа обусловили необходимость масштабных расчетов на аэроупругость. Эти расчеты выполнялись с применением новейшего по тому времени инструментария – цифровых и аналоговых ЭВМ, но все же не дали хороших характеристик самолета при полете в турбулентной атмосфере. Поэтому важной экспериментальной работой стали исследования на ХВ-70 системы GAS-DSAS, предназначенной для парирования нагрузок от воздушных порывов и подавления аэроупругих колебаний конструкции. Эта программа продолжила работы, проводившиеся на самолете Боинг В-52 (системы SAS и LAMS). Система GAS-DSAS предусматривала отклонение элевонов (по тангажу и крену), а также рулей направления по сигналам датчиков перегрузок. Исследования показали, что для уменьшения интенсивности изгибных колебаний фюзеляжа целесообразно использовать небольшие горизонтальные и вертикальные поверхности, расположенные по схеме «утка». В дальнейшем подобная система была применена на бомбардировщике В-1.

Летные исследования с участием NASA проводились также в области аэродинамики (флаттер панелей обшивки, сопротивление трения обшивки, донное сопротивление фюзеляжа и т.д.), конструкции (аэродинамический нагрев, полетные нагрузки) и эксплуатации (шум на местности).

Пилотажные характеристики самолета оценивались летчиками в целом как очень хорошие в полете и на малых, и на больших скоростях, особенно отмечалась легкость и мягкость посадки, как у пассажирских самолетов. Большое треугольное крыло создавало у земли воздушную подушку, увеличивавшую подъемную силу на 15%. В результате, вертикальная скорость в момент приземления составляла всего 0,3… 1,2 м/с.

В СССР с 1962 г. создавался аналог В-70. В результате конкурса проектов, в котором приняли участие ОКБ П.О.Сухого, А.Н.Туполева и А.С.Яковлева, в 1972 г. был разработан новаторский «трехмаховый» экспериментальный самолет Т-4 («сотка») конструкции П.О.Сухого, относившийся, правда, в отличие от «Валькирии», к категории средних бомбардировщиков (максимальная взлетная масса 135 т, а практическая дальность 4000 км, в сравнении с расчетными 244 т и 12000 км у В-70). Т-4 не строился серийно и его основное значение, как и ХВ-70, состоит в разработке новых технологий.

КОНСТРУКЦИЯ.

Самолет схемы «утка» с тонким треугольным крылом и двухкилевым вертикальным оперением. При М=3 температура обшивки могла достигать 330°С и в конструкции широко использовались нержавеющая сталь РН15-7Мо (68%), высокопрочная инструментальная сталь НИ (17%), титановые сплавы (9% по массе). Применены также нержавеющая сталь АМ-35 (4%) и сплав на никелевой основе Рене-41 (2%). Эти материалы сохраняют высокую прочность в расчетном диапазоне рабочих температур В-70, равном 230-330°С.


«Валькирия» выполнена по схеме «утка» с треугольным крылом большой площади


«Трехмаховый» экспериментальный самолет Т-4 («сотка») ОКБ им.П.О.Су- хого


Для В-70 были первоначально разработаны обычные листовые металлические обшивки, усиленные панели различной конструкции и слоистые панели. Исследования показали, что наилучшие характеристики для большей части планера имеют слоистые панели. В значительной мере это обусловливалось требованием хороших теплоизолирующих свойств. В противном случае, вследствие кинетического нагрева обшивки, температура топлива в баках-отсеках могла превысить 150°С предельно допускаемый уровень температуры топлива на входе в двигатель. В пользу слоистых конструкций говорили и их высокая жесткость (а, следовательно, сохранение гладкой поверхности и высокого аэродинамического качества на больших скоростях), устойчивость к акустической усталости (от колебаний воздушного давления в скоростном полете и шума двигателей) и относительно малая масса.

Слоистые панели выполнены из нержавеющей стали и имеют сотовый или гофрированный заполнитель. Из них изготовлены обшивка большей части крыла, нижней и верхней поверхности фюзеляжа, килей и другие компоненты. От склейки панелей отказались, так как клееные конструкции не работают при высоких температурах. Сотовый заполнитель припаивается к листам обшивки, а гофрированный заполнитель приваривается точечной сваркой. От инструментальных сталей, как материала для слоистых конструкций, отказались вследствие трудностей, связанных с необходимостью применения антикоррозийных покрытий, и проблем с их обработкой. Пришлось отказаться и от титана, как как лучшие из имевшихся титановых сплавов нельзя было одновременно подвергать пайке и термообработке, а листы из них нельзя было гнуть под углами, требуемыми для получения гофра.

Во время испытаний встретилась проблема отслоения верхних листов слоистых панелей обшивки в результате производственных дефектов и аэродинамического нагрева конструкции в полете. В нескольких летных происшествиях воздушный поток «отодрал» от самолета и унес значительные по размерам (например, 1,02x0,91 м и 0,20x0,97 м) вздувшиеся участки листов.

Значительная часть остальной конструкции, не образующей топливных баков-отсеков, выполнена из высокопрочных титановых сплавов. Из них изготовлены носовая секция фюзеляжа типа монокок длиной 18,6 м, переднее оперение, хвостовая часть фюзеляжа в зоне отсеков двигателей, лонжероны килей и часть внутренней конструкции поверхностей управления и крыла. Всего в конструкции В-70 используется около 5400 кг титана. Из стали НИ выполнены многие важные элементы конструкции, в том числе шасси и механизмы складывания крыла, главные лонжероны передней части фюзеляжа и центроплана над отсеками двигателей. Этот материал настолько прочен, что до В-70 он применялся, главным образом, для изготовления инструментов, а в самолетной конструкции использовался в небольшом количестве только на бомбардировщике A-3J. Всего в конструкции В-70 используется около 10400 кг стали НИ.

Крыло В-70 имеет удлинение 1,75, средняя аэродинамическая хорда 23,94 м. Длина хорды у корня 35,89 м, на концах 0,67 м, относительная толщина 2% на участке по размаху до 4,72 м и 2,5% на участке от 11,68 до 16,0 м. Угол поперечного V нулевой на самолете N1, положительный +5° на самолете N2.


«Валькирия» в крейсерской конфигурации (М=3) с отклоненными законцовками крыла


Носок крыла в корневой части имеет небольшую кривизну, на участке между фюзеляжем и шарнирами поворота концевых частей используется коническая крутка. Управление тангажом и креном осуществляется с помощью зависающих элевонов (по шесть секций на консоли крыла) общей площадью 36,74 м 2 , отклоняющихся на угол до 25° вниз и до 15° вверх, управление рысканием – с помощью рулей направления общей площадью 35,52 м 2 . Рули направления занимают большую часть килей (поэтому кили ХВ-70 иногда называются поворотными) и имеют наклонные оси шарниров поворота, предельные углы их отклонения составляют ±12° при выпущенном шасси и ±3° при убранном шасси.

Концевые части крыла (2x48,39 м 2 ) отклоняются вниз. При разработке самолета намечалось, что они будут фиксироваться в трех положениях: 0° при дозвуковой скорости, 25° (на самолете N1) и 30° (N2) при околозвуковых скоростях, 65° (N1) и 70° (N2) при сверхзвуковых скоростях. В реальных полетах отклонение концов крыла в среднее положение практиковалось раньше – на скорости 500 км/ч, почти сразу после уборки шасси. Это связано с тем, что неблагоприятный разворачивающий момент рыскания при отклонении элевонов по крену оказался значительно большим, чем предполагалось. В результате, например, попытки летчиков в условиях скольжения выправить крен действием одних элевонов приводили к еще большему кренению самолета и развитию скольжения. Для координации движения самолета требовалось противоположное отклонение рулей направления, а также повышение боковой устойчивости самолета, что и достигалось ранним отклонением концов крыла. При этом дополнительно уменьшался и разворачивающий момент (правда, с уменьшением управляющего момента крена), поскольку из работы выключались по две секции элевонов, расположенные на концевых частях крыла.

Фюзеляж типа полумонокок выполнен в соответствии с правилом площадей. Для улучшения обзора при заходе на посадку верхняя панель носовой части фюзеляжа перед лобовым стеклом опускается. Кабина экипажа, состоящего из двух человек, герметическая. На бомбардировщике численность экипажа предполагалось довести до четырех человек за счет включения в него помимо двух летчиков также штурмана- бомбардира и оператора оборонительной системы. В кабине поддерживается давление, соответствующее атмосферному на высоте 2400 м, что позволяет экипажу обходиться без высотных скафандров. Установлены катапультируемые кресла с двумя створками, образующими при закрытии индивидуальные герметические спасательные капсулы с автономной системой наддува и кислородной системой. Капсулы обеспечивают аварийное покидание самолета на высотах от уровня моря до 24000 м. Входная дверь расположена с левого борта впереди переднего оперения.


На этом снимке ХВ-70А, поставленного в ангар для регламентных работ, хорошо видна кабина с фюзеляжной опускающейся панелью перед лобовым стеклом (на снимке панель в поднятом положении)


Второй самолет ХВ-70А на пробеге с выпущенными тормозными парашютами


Переставное (диапазон углов отклонения 6°) переднее горизонтальное оперение (ПТО) площадью 24,64 м2 без подфюзеляжной части и стреловидностью по передней кромке 31,7° используется для продольной балансировки самолета и как дестабилизатор при М›1. Закрылки ПТО площадью 10,16 м2 отклоняются на угол до 25° совместно с элевонами при взлете и посадке. Отнесенные на большое расстояние от центра масс самолета, закрылки ПГО парируют момент тангажа, возникающий при взлетно-посадочном зависании элевонов, которое давало возможность эксплуатировать самолет с существовавших аэродромов. Одним из недостатков «Валькирии» был срыв потока с ПГО при М‹0,88 даже при отклонении расположенных на нем закрылков, что приводило к довольно сильной тряске самолета на малых скоростях. Тряска исчезала по мере роста скорости.

Шасси трехопорное с передней опорой. Двухколесная носовая стойка и основные стойки с четырехколесными тележками убираются назад, тележки при уборке поворачиваются на 90°. Все колеса и пневматики одинакового размера (диаметр пневматиков 1060 мм), рассчитаны на температуру нагрева 180°С. Отсеки шасси охлаждаются до температуры 120°С. Тормоза дисковые, установлены отдельно от колес (для повышения эффективности охлаждения). Применены автоматы торможения. Масса шасси превышает 5400 кг, что составляет примерно 2,5% от взлетной массы самолета. При посадке используются три тормозных парашюта с диаметром купола 8,5 м. База шасси 14,1 м, колея 7,1 м.

В ходе испытаний были случаи нераскрутки колес на посадке из-за несовершенства тормозной системы, которая блокировала колеса. В то же время шасси и тормоза сработали нормально, когда посадка была совершена при очень высокой массе самолета – 190,5 т. Ресурс основных тормозных колес составлял вначале 3-4 посадки, затем он был доведен до 5-10 посадок.

СИЛОВАЯ УСТАНОВКА.

Двигатели установлены по пакетной схеме в хвостовой части фюзеляжа. Диаметр двигателя 1,33 м, длина 6,02 м, масса 2360 кг. Общий плоский многоскачковый воздухозаборник смешанного сжатия размещен под фюзеляжем и имеет центральный клин, разделяющий воздухозаборник на два канала, каждый из которых подает воздух к трем двигателям. Регулирование воздухозаборника осуществляется с помощью трех подвижных перфорированных рамп с гидравлическим приводом. Сверху крыла, у его вершины расположены перепускные створки. На первом ХВ-70 была установлена ручная/полуавтоматическая система управления воздухозаборником, на втором – полностью автоматическая. Канал воздухозаборника высотой у входа 2,1 ми длиной около 24 м состоит из сверхзвукового и дозвукового диффузоров. Сопла двигателей сужающиеся-расширяющиеся, обеспечивают непрерывное регулирование тяги на форсированном режиме. По первоначальному проекту предполагалось применить обычную механическую проводку управления двигателями. В конечном итоге остановились на применении электронной системы управления, которая была ранее применена фирмой Норт Америкен на истребителе-перехватчике F-86D.


Бомбоотсек на ХВ-70 должен был располагаться между каналами воздухозаборника


Общий подфюзеляжный воздухозаборник на ХВ-70А разделяется на два канала, каждый из которых обслуживает три двигателя


Запуск двигателей на земле осуществляется с помощью аэродромной установки или автономно. В последнем случае один из двигателей запускается твердотопливным стартером и затем используется для привода гидродвигателя, от которого производится пуск остальных двигателей.

Силовая установка доставила немало хлопот испытателям. Так же, как и на «трехмаховом » разведчике SR-71, в полете неоднократно нарушалась расчетная работа воздухозаборника из-за образования выбитой ударной волны на входе. Особенно неблагоприятные последствия наступали при М=3: резко падала тяга, возникали грохот и тряска, самолет совершал непроизвольные движения по крену, тангажу и рысканию. Одной из крупных эксплуатационных проблем с двигателями были их частые повреждения посторонними предметами (заклепками, птицами, льдом из дренажных каналов; подсос предметов с ВПП в воздухозаборники на взлете не отмечался). Титановые лопатки, использованные в компрессоре YJ93, имели значительно большую повреждаемость по сравнению со стальными. Только за неполные первые два года испытаний потребовалось 25 раз снимать двигатели с самолета для ремонта по этой причине.

Стандартное топливо JP-4 нельзя было использовать из-за высокого давления паров и чрезмерного испарения. Более подходящим оказалось его производное – JP-6 с более низким давлением паров, повышенной термической стабильностью и меньшим осадкообразованием. Топливо размещается в 11 баках-отсеках (шесть в крыле и пять в хвостовой части фюзеляжа). В ходе постройки самолета встретились трудности с герметизацией топливных баков. На первом самолете один из баков не использовался из-за того, что так и не удалось добиться необходимой герметичности. Начало летных испытаний второй машины было сдвинуто на полгода, в основном, из-за дополнительных работ по уплотнению баков.

Заправка топливом самолета ХВ-70 длилась 1-1,5 ч из-за сложности процедуры, имевшей целью предотвратить самовоспламенение топлива на больших крейсерских высотах. Вначале топливо перекачивалось из заправщика во второй пустой заправщик, где продувалось сухим азотом под высоким давлением (для вытеснения кислорода), и лишь потом поступало в топливные баки, которые в полете также наддувались азотом.

На бомбардировщике предполагалось установить систему дозаправки топливом в воздухе.

ОБЩЕСАМОЛЕТНЫЕ СИСТЕМЫ.

Система управления бустерная необратимая с дублированными гидравлическими приводами. Проводка управления элевонами и рулями направления тросовая, ПГО – жесткая. Возможно ручное управление рулями направления и ПТО. Установлена электронная резервированная система повышения устойчивости, обеспечивающая демпфирование колебаний крена, рыскания и тангажа.

Одним из крупных технических новшеств на самолете ХВ-70 было применение гидравлической системы с рабочим давлением 27,5 МПа (280 кгс/см2 ), способной работать при температуре от -54 до 230°С (кратковременно до 340° С). Гидросистема состоит из четырех независимых, одновременно работающих систем с питанием от 12 гидронасосов переменной подачи. Предназначена для привода органов управления, шасси, концевых частей крыла, аварийного генератора. Приводы поверхностей управления и концов крыла двухкамерные.

Электрическая система переменного тока (115/200 В, 400 Гц) с питанием через понижающие трансформаторы от двух основных генераторов мощностью по 60 кВ А (240/416 В, 440 Гц), приводимых от двигателей. Аварийный генератор мощностью 60 кВ А с приводом от гидродвигателя.

ЦЕЛЕВОЕ ОБОРУДОВАНИЕ. Разрабатывавшаяся вначале фирмой IBM навигационно-бомбардировочная система AN/ASQ-28 должна была обслуживаться штурманом-бомбардиром, сидящим непосредственно за вторым летчиком. В ее состав входят инерциальная навигационная система с гиростабилизированными платформами и астронавигационная система с блоком астросопровождения. Вычислитель позволял осуществлять полет по запрограммированному маршруту, непрерывно определял текущее местоположение самолета, время полета и расстояние до цели. Использовалась также радионавигационная система TACAN, система опознавания госпринадлежности, аппаратура для встречи бомбардировщика с самолетом-заправщиком и для посадки по приборам.

На бомбардировщике предполагалось применить доплеровский радиолокатор фирмы Дженерал Электрик с высокой разрешающей способностью. Экспериментальный образец РЛС прошел летные испытания.

Оборонительная система, разрабатывавшаяся фирмой Вестингауз, должна была включать радиолокационные и ИК станции помех. Рабочее место оператора оборонительной системы располагалось за креслом командира экипажа.

Предполагалось, что общая масса авионики на бомбардировщике В-70 достигнет 4,5 т.

ВООРУЖЕНИЕ. Бомбоотсек длиной 9,1 м располагается в нижней центральной части фюзеляжа между изогнутыми каналами воздухозаборника. В нем предполагалось размещать ядерные и обычные бомбы. В начале программы намечалось также в бомбоотсеке устанавливать баллистические ракеты, а под крылом подвешивать управляемые крылатые ракеты, т.е. планировалась схема, реализованная позднее на дозвуковом бомбардировщике В-52. Однако впоследствии от внешней подвески отказались. Программа баллистической ракеты Мартин WS-199B «Болд Орион», первоначально предназначавшейся для В-70, была отменена. Двухступенчатая баллистическая ракета AGM-48 «Скайболт», разработка которой началась в 1959 г. также с прицелом на внутреннее размещение в фюзеляже В-70, в конечном итоге при длине 11,6 м не умещалась в бомбоотсеке не только «Валькирии», но и В-52, для которого предназначалась прежде всего. Предлагалось использовать на «Валькирии» одноступенчатый вариант «Скайболта», но это предложение также не реализовали.

После того, как В-70 переклассифицировали в экспериментальную машину, в бомбоотсеке расположили аппаратуру системы управления воздухозаборником массой 2,0 т и аналого-цифровую записывающую аппаратуру массой 2,7 т, способную регистрировать до 1050 параметров.


ХАРАКТЕРИСТИКИ ХВ-70

РАЗМЕРЫ. Размах крыла 32,00 м; длина самолета 57,61 м; высота самолета 9,14 м; площадь крыла 585,07 м2 ; угол стреловидности крыла: по передней кромке 65,57°, по линии 1/4 хорд 58 79°.

ДВИГАТЕЛИ. ТРД Дженерал Электрик YJ93-GE-3 (тяга форсированная/нефорсированная 6x137,9 кН/6х111,3 кН, 6x14060/ 6x11350 кгс).

МАССЫ И НАГРУЗКИ, кг: взлетная масса: максимальная расчетная при полном запасе топлива и целевой нагрузке – более 251500; типовая фактическая во время испытательных полетов – 236000…240000; нормальная посадочная масса около 143000; масса конструкции более 58000; полный запас топлива более 138000.

ЛЕТНЫЕ ДАННЫЕ. Максимальное число М=3,08; расчетная максимальная скорость на большой высоте 3220 км/ч; взлетная скорость 350 км/ч; нормальная посадочная скорость около 335 км/ч; практический потолок более 21000 м; расчетная максимальная дальность 12000 км; радиус виража при М=3 не менее 160 км; время выполнения разворота на 180° с креном 20° – 13 м.









Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Наверх