Введение

Элемент игры, который делает занимательную математику занимательной, может иметь форму головоломки, состязания, фокуса, парадокса, ошибочного рассуждения или обычной математической задачи с «секретом» — каким-либо неожиданным или забавным поворотом мысли. Относятся ли все эти случаи к чистой или прикладной математике, решить трудно. С одной стороны, занимательную математику, безусловно, следует считать чистой математикой без малейшей примеси утилитарности. С другой — она, несомненно, относится к прикладной математике, ибо отвечает извечной человеческой потребности в игре.

Вероятно, такая потребность лежит в основе даже чистой математики. Не так уж велико различие между восторгом неофита, сумевшего найти ключ к сложной головоломке, и радостью математика, преодолевшего еще одно препятствие на пути к решению сложной научной проблемы. И тот и другой заняты поисками истинной красоты — того ясного, четко определенного, загадочного и восхитительного порядка, что лежит в основе всех явлений. Не удивительно поэтому, что чистую математику порой трудно отличить от занимательной. Так, в топологии проблема четырех красок до недавнего времени оставалась нерешенной, хотя ей посвящена не одна страница во многих книгах по занимательной математике.

Никто не станет отрицать, что флексагоны, о которых говорится в первой главе этой книги, — игрушки весьма занимательные, тем не менее анализ их структуры очень скоро упирается и необходимость использования высших разделов теории групп, и статьи о флексатонах можно встретить на страницах многих сугубо специальных математических журналов.

Математики творческого склада обычно не стыдятся своего интереса к занимательным задачам и головоломкам. Топология берет свое начало в работе Эйлера о семи кенигсбергских мостах. Лейбниц потратил немало времени на решение головоломки, которая пережила свое второе рождение под названием «Проверьте уровень своего развития (IQ)». Крупнейший немецкий математик Гильберт доказал одну из основных теорем традиционной области занимательной математики — разрезания фигур. А. Тьюринг, основоположник современной теории вычислительных машин, рассмотрел изобретенную С. Лойдом игру в 15 (в нашей книге ей посвящена глава 9) в своей статье о разрешимых и неразрешимых проблемах.

П. Хейн (чьи игры гекс и тактике описаны в главах 8 и 15) рассказал мне, что, будучи в гостях в Эйнштейна, видел в книжном шкафу хозяина целую полку, забитую математическими забавами и головоломками. Нетрудно понять интерес, который все эти великие умы питали к математической игре, ибо творческое мышление, находящее для себя награду в столь тривиальных задачках, сродни тому типу мышления, который приводит к математическому и вообще научному открытию. В конце концов, что такое математика, как не систематические попытки найти все лучшие и лучшие ответы на те головоломки, которые ставит перед нами природа?

В настоящее время педагогическая ценность занимательной математики общепризнана. Это подчеркивают и журналы, предназначенные для преподавателей математики, и новые учебники, особенно те из них, которые написаны с «современных позиций». Так, даже в столь серьезной книге, как «Введение в конечную математику»,[1] изложение нередко оживляется занимательными задачами.

Вряд ли существует лучший способ пробудить интерес читателя к изучаемому материалу. Преподаватель математики, выговаривающий студентам за игру на лекции в крестики и нолики, должен был бы остановиться, чтобы спросить себя, не представляет ли эта игра большего интереса с точки зрения математики, чем его лекция. И действительно, разбор игры в крестики и нолики на семинарских занятиях может послужить неплохим введением в некоторые разделы современной математики.

Известный английский изобретатель головоломок Генри Дьюдени в своей статье «Психологическая сторона увлечений головоломками», опубликованной в декабрьском номере Nineteenth Century Magazine за 1926 год, писал, что литература по занимательной математике страдает чудовищными повторениями, а отсутствие соответствующей библиографии вынуждает энтузиастов понапрасну тратить время на составление задач, которые были уже придуманы задолго до них. Сегодня я счастлив сообщить, что потребность в подобного рода библиографии удовлетворена. Профессор У. Л. Шааф из Бруклинского колледжа составил превосходную библиографию.[2] Что же касается второго упрека Дьюдени, то боюсь, что он все еще справедлив как по отношению к выходящим в наше время книгам по занимательной математике, так и по отношению к книге, предлагаемой вниманию читателей. Но я хочу надеяться, что в моей книге читатели обнаружат большую, чем обычно, порцию свежего материала, который прежде не находил места на страницах занимательной математической литературы.

Мне хотелось бы поблагодарить Дж. Пила, издателя журнала Scientific American, и редактора Д. Фленегена за оказанную мне честь принадлежать к числу постоянных авторов этого журнала и за разрешение воспроизвести плоды моих трудов в этой книге. Я выражаю свою признательность тысячам читателей со всех концов света, которые взяли на себя труд обратить мое внимание на допущенные в них ошибки (к сожалению, слишком многочисленные) и внесли множество ценных предложений. В некоторых случаях эта приветствуемая мной «обратная связь» нашла отражение непосредственно в тексте, но чаще всего из замечаний читателей составлены дополнения, помещенные в конце глав. Ответы к задачам, где это необходимо, помещены там же.

Не могу не выразить благодарности своей жене не только за то, что она со знанием дела и неизменной бодростью духа принимала участие в чтении корректур, но и за проявленное ею терпение, когда, погруженный в размышления о какой-либо математической головоломке, я не слышал того, что она мне говорила.

Мартин Гарднер


Примечания:



1

Кемени Дж. Д., Снелл Дж. Л., Томсон Дж. Л. Введение в конечную математику. — М.: ИЛ, 1963.



2

Schaat W. L. Recreational Mathematics, 3d rev. ed. — 1963.









Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Наверх