Глава 1

В поисках объяснения невероятного

Животные, и мы в том числе — это самые сложные объекты в известной нам вселенной. Разумеется, вселенная, известная нам — ничтожный фрагмент всей Вселенной, и не исключено, что на других планетах существуют ещё более сложные объекты; некоторые из них могут уже знать про нас. Но это не меняет сути проблемы. Наличие сложных сущностей, где бы они ни были, требует очень специфических объяснений. Мы хотим знать, как они пришли в этот мир, и почему они так сложны. Я постраюсь доказать, что объяснение этого, вероятно, будет универсальным для аналогичных сложных вещей во всей Вселенной — будь то мы с вами, шимпанзе, черви, деревья или космические монстры. С другой стороны, все они будут отличаться от объектов, которые я буду называть «простыми» — камней, облаков, рек, галактик и кварков. Все они — предмет физики. Шимпанзе, собаки, летучие мыши, тараканы, люди, черви, одуванчики, бактерии и галактические пришельцы являются предметом биологии.


Различие между ними — в их сложности. Биология изучает сложные объекты, которые выглядят как бы специально предназначенными для решения какой-то задачи. Физика изучает простые вещи, которые не вызывают у нас соблазна привлечь понятие замысла. На первый взгляд, рукотворные изделия, такие как, компьютеры и автомобили, выглядят исключениями. Они сложны и явно разработаны для некой цели, однако они не живые и сделаны металла и пластика, а не плоти и крови. В этой книге они будут однозначно трактоваться как биологические объекты. Читатель может удивлённо спросить: «Да, но разве это биологические объекты?» Слова — наши слуги, а не хозяева. Мы находим удобным для различных задач использовать слова в различных смыслах. Большинство кулинарных книг относят омаров к рыбам. У зоологов такая классификация может вызвать протест — они могут указать, что у омаров есть больше оснований называть рыбами людей, так как рыбы — гораздо более близкие родственники людям, чем омарам. И рассуждая о правовом статусе омаров, я догадываюсь, что принадлежность омаров к насекомым или «животным» следовало бы узаконить решением суда (что имело бы следствием разрешение людям варить их живьём или нет). С зоологической точки зрения, омары — конечно же, не насекомые. Они относятся к животным, да, но к ним же относятся и насекомые, и мы с вами. Довольно мало смысла в возмущении непривычным использованием людьми разных слов (Хотя в частном порядке я весьма склонен возмущаться людьми, варящими омаров живьём). Поварам и адвокатам следует использовать слова в их профессиональной манере, и я буду поступать так же в этой книге. Не нужно придираться к вопросу о том, в «самом ли деле» автомобили и компьютеры — биологические объекты. Дело в том, что если на некоей планете будет найден какой-нибудь предмет данного уровня сложности, то мы будем должны без колебаний заключить, что на этой планете жизнь существует или когда-то существовала. Машины — непосредственные продукты деятельности живых объектов; они «наследуют» их сложность и замысел, и по ним можно диагностировать существования жизни на этой планете. То же самое справедливо для окаменелостей, скелетов и мёртвых тел.


Я сказал, что физика изучает простые вещи, и это утверждение тоже может поначалу показаться странным. Физика представляется нам сложным предметом, ибо физические идеи трудны в понимании для нас. Наш мозг был предназначен для понимания проблем охоты и собирательства, спаривания и взращивания потомства — для ориентировке в мире с объектами среднего размера, двигающимися в трёх измерениях с умеренными скоростями. Мы плохо подготовлены для постижения чего-то очень большого или малого; процессов, продолжительность которых измеряется в пикосекундах или миллиардах лет; частиц с неопределённым положением в пространстве; сил и полей, которые мы не можем увидеть или ощутить и о котором мы знаем только потому, что они воздействуют на вещи, которые мы можем увидеть или пощупать. Мы полагаем, что физика сложна, потому что её нам бывает трудно понять, и потому, что книги по физике полны трудной математики. Но в сущности, изучаемые физиками объекты, тем не менее, просты. Это облака газов или крошечных частиц, или глыбы однородной материи, такие как кристаллы, с почти бесконечно повторяющейся атомной структурой. У них нет, по крайней мере по биологическим стандартам, замысловатых работающих частей. Даже большие физические объекты, такие как звёзды, состоят из довольно ограниченного множества составных частей, более или менее бессистемно организованных. Поведение физических, небиологических объектов настолько просто, что для описания его возможно использовать существующий математический язык, и именно поэтому в физических книгах так много математики.


Книги по физике могут сложны, но эти книги, подобно автомобилям и компьютерам, являются продуктом биологического объекта — человеческого мозга. Объекты и явления, описанные в книге по физике, проще, чем единственная клетка в теле её автора. А автор состоит из триллионов таких клеток, многие из которых отличаются друг от друга, и соорганизованы посредством замысловатой архитектуры и точной сборки в работающий механизм, способный к написанию книги (я использую американские триллионы, как и все мои единицы; один американский триллион — это миллион миллионов; американский миллиард — тысяча миллионов). Наш мозг не лучше приспособлен для восприятия экстремальной сложности, чем для восприятия экстремальных размеров или других трудных физических экстремумов. Пока никто ещё не изобрёл математику для описания полной структуры и поведения такого объекта, как физик — или даже одной из его клеток. Всё, что мы можем сделать — это понять часть общих принципов функционирования живых существ, и почему они существуют вообще.


Мы вернулись к тому, с чего мы начали. Мы хотели знать, почему мы и все другие сложные вещи существуют. И теперь мы можем в общих чертах ответить на этот вопрос, даже не обладая способностями постигать детали этой сложности. Вот аналогия — большинство из нас не понимает в деталях, как функционирует воздушный лайнер. Возможно, всех этих деталей не понимают и его создатели: двигателисты не понимают тонкостей работы крыльев, а специалисты по крыльям понимают работу двигателей лишь в общих чертах. Собственно говоря, специалисты по крыльям не понимают работу крыльев с полной математической точностью — они могут предсказать поведение крыла в условиях турбулёнтности, лишь исследуя модель в аэродинамической трубе или в ходе компьютерного моделирования — как раз то, что может делать биолог для исследования животного. Но как бы смутно мы ни понимали работу воздушного лайнера, все мы понимаем тот общий процесс, который вызвал воздушный лайнер из небытия. Он был разработан людьми на чертёжных досках. Затем другие люди изготовили детали по этим чертежам, потом большее число людей (при помощи других машин, разработанных людьми) свинтили, склепали, сварили и склеили эти детали между собой, каждую на нужном месте. Процесс, воззвавший воздушный лайнер к существованию, не очень загадочен для нас, потому что его сделали люди. Систематическая сборка деталей в осмысленный проект — это нечто такое, что мы знаем и понимаем, поскольку мы собственноручно это испробовали, пусть даже на детском конструкторе.


Но что можно сказать про наши собственные тела? Каждый из нас — механизм, подобный воздушному лайнеру, только намного более сложный. Были ли мы, как и лайнер, разработаны на чертежной доске, и собирались ли детали, из которых мы состоим, воедино квалифицированным инженером? Нет. Это удивительный ответ; мы узнали и поняли его лишь примерно столетие назад. Когда Чарльз Дарвин впервые дал объяснение, то многие люди не захотели или не смогли принять его. Я сам категорически отказывался верить теории Дарвина, когда впервые услышал о ней в детстве. Практически все люди, на всём протяжении истории до второй половины 19-го века, твёрдо верили нечто обратное — в теорию Сознательного Творения. И многие люди до сих пор продолжают в неё верить, возможно, потому, что истинное, дарвиновское объяснение нашего существования — до сих пор, и это знаменательно, не вошло в обязательную часть учебной программы общего образования. И эта неправильная точка зрения очень широко распространена.


Часовщик, упомянутый в заглавии этой книги, взят из известного трактата богослова 18-го века Уильяма Пали. Его книга «Натуральная теология — или признаки и свидетельства существования бога, видимые в явлениях природы», изданная в 1802 году, является наиболее известным собранием «аргументов в пользу Творения» и с тех пор рассматривается как наиболее убедительное доказательство существования бога. Я восхищаюсь этой книгой, ибо её автор в его время преуспел в решении той задачи, над решением которой я бьюсь сейчас. Он имел чёткое мнение, истово верил в него и не жалел сил для того, чтобы убедить в этом всех. Он питал надлежащее почтение к сложности живого и видел, что оно требует очень специфического объяснения. Он был неправ в одном и, предположительно, очень важном — в сущности своего объяснения. Он дал традиционный религиозный ответ на эту загадку, но сформулировал его яснее и убедительнее любого своего предшественника. Правильное объяснение — совершенно иное, и ему пришлось ждать одного из самых революционных мыслителей всех времён, Чарльза Дарвина.


Пали начинает свою «Натуральную теологию» со знаменитого пассажа:

Предположим, что идя по пустыне, я споткнулся о камень и спросил себя: «Как этот камень здесь оказался»? И я мог бы, не зная ничего иного, возможно ответить, что он тут был всегда; при этом, очевидно было бы нелегко показать абсурдность этого ответа. Но предположим далее, что я нашёл на земле часы, и если бы меня спросили, как на этом месте оказались эти часы, то вряд ли мне бы голову пришёл ответ, который я дал чуть выше — что, насколько я знаю, часы могли быть здесь всегда.

Пали здесь воздаёт должное различию между естественными физическими объектами, такими, как камни, и рукотворными, спроектированными — такими, как часы. Он продолжает разъяснения, указывая на точность, с которой изготовлены их винтики и пружинки, на замысловатость конструкции, в которую они собраны. Если бы мы нашли в предмет, подобный этим часам в пустыне, то даже если бы мы не знали, как они появились, то их точность и сложность замысла вынудили бы нас заключить, что…

…у часов должен быть изготовитель; значит, должно быть существовал — в какое-то время, в том или ином месте — механик или механики, который изготовил Это для цели, которой (как мы находим), Это и в самом деле отвечает, который придумал эту конструкцию и замыслил её использование…

Разумно! Вряд ли кому-то пришло в голову возразить. Пали настаивает далее (так же, как это делает в действительности атеист, когда рассматривает работу природы), что…

…многочисленные проявления изобретательности, признаки замысла, имеющиеся у часов, имеют место и в работах природы — с тем отличием, что у порождений природы их намного больше, и совершенство их превышает все попытки его измерить.

Пали поддерживает свою позицию красивыми и благоговейными описаниями разрезов машин жизни. Первым был приведён человеческий глаз — любимый пример, который позже использовал Дарвин, и который будет регулярно появляться в этой книге далее. Пали сравнивает глаз с задуманным прибором, таким, как телескоп, и заключает, что «можно столь же неопровержимо утверждать, что глаз был сделан для зрения, как и то, что телескоп был сделан для помощи ему». У глаза должен быть разработчик, точно так же, как он был у телескопа.


Аргументация Пали отличается страстной искренностью и базируется на лучших достижениях биологической мысли тех дней, но она неправильна — пусть великолепна, но совершенно ложна. Аналогии между телескопом и глазом, между часами и живым организмом ложны. Всё наоборот, единственный «часовщик» в природе — слепые силы физики, хотя и очень специфически работающие здесь. У настоящего часовщика есть способность предвидеть: он проектирует эти винтики и пружинки, планирует их сочленения, видя их будущую работу перед своим мысленным взором. Открытый Дарвиным естественный отбор — слепой, бессознательный, автоматический процесс, о котором теперь знаем и мы, — объясняет существование и очевидную целеустремленность всех форм жизни, не имея при этом никакой цели в мозгу. У него нет никаких мыслей и никакого мысленного взора. Он не планирует будущее. У него нет ни зрения, ни предвидения вообще. Если и можно роль естественного отбора приравнять к роли часовщика природы, то это — слепой часовщик. Я объясню всё это и много чего сверх этого. Но я не буду делать одного — умалять удивления «живыми часами», которые так вдохновляли Пали. Напротив, я буду стараться подчеркнуть моё ощущение, что Пали мог пойти дальше. По части благоговейного трепета перед «живыми часами» я не уступаю никому. У меня больше общего с преподобным Уильямом Пали, чем с «выдающимся современным философом, известным атеистом», с которым я однажды обсуждал проблему на обеде. Я сказал, что не могу представить себе атеиста в любой момент истории до 1859 года, когда было издано «Происхождение видов» Дарвина. «А как же Хьюм?», спросил философ. Я в свою очередь спросил: «А как Хьюм объяснял организованную сложность живого мира?» Философ ответил: «Никак. А зачем здесь нужно какое-то особое объяснение?»


Пали знал, что здесь нужно особое объяснение; и Дарвин знал, и, я подозреваю, что в глубине души мой компаньон-философ тоже. По крайней мере — именно затем я здесь, чтобы показать его. Что же до самого Девида Хьюма, то иногда говорится, что великий шотландский философ располагал аргументами против «сотворения мира» за столетие до Дарвина. За что Хьюма критикуют, так это за использование логики видимого замысла в природе, как позитивное свидетельство существования бога. Он не предлагал никакого альтернативного объяснения видимости замысла, оставив вопрос открытым. До-Дарвиновский атеист мог бы, вслед за Хьюмом, сказать: «У меня нет никакого объяснения сложности биологического замысла. Бог — не есть хорошее объяснение, и это всё, что я знаю; и нам остаётся ждать и надеяться, что кто-нибудь предложит что-нибудь лучше». Я думаю, что такая позиция, пусть и логически оправданная, оставляла ощущение изрядной неудовлетворённости, и хотя атеизм мог быть логически здравым и до Дарвина, но именно Дарвин дал атеизму возможность быть рационально убедительным. Я с удовольствием думаю, что Хьюм согласился бы с этим, впрочем некоторые из его писем показывают, что он недооценивал сложность и красоту биологического замысла. Мальчик-натуралист Чарльз Дарвин мог бы показать ему на этот счёт пару вещиц, но Хьюм был уже 40 лет как мёртв, когда Дарвин поступил в Эдинбургский университет Хьюма.


Зачем я так многословно рассуждал о сложности и ощущении замысла, хотя смысл этих слов общем-то очевиден? Да, в некотором смысле он очевиден — у большинства людей есть интуитивные понятия о «сложности». Но эти понятия, сложность и замысел — основополагающие понятия этой книги, поэтому мне нужно добиться несколько большей точности этих слов, ощущения, что есть нечто особенное и в сложности, и в замысле.


Итак, что же есть сложный объект? Как мы сможем отличить его от простого? В каком смысл истинно утверждение, что часы, воздушный лайнер, уховертка или человек сложны, а луна проста? Первый признак, который может придти к нам на ум как необходимый признак сложной вещи — это гетерогенность структура объекта. Розовый молочный пудинг или бланманже просты в том смысле, что если мы разрежем их надвое, то эти две порции будут иметь идентичное внутреннее строение — бланманже гомогенен. Автомобиль — гетерогенен; в отличие от бланманже, почти любая его «порция» отличается от других. Две половины автомобиля — не есть два меньших автомобиля. Мы часто будем говорить, что сложный объект, в отличие от простого, имеет много частей, причём частей более чем одного вида. Такая гетерогенность или «многочастность» является необходимым, но недостаточным условием. Довольно большое количество объектов «многочастны» и гетерогенны по внутренней структуре, но не являются сложным в том смысле, в каком я хочу использовать этот термин. Например, Монблан состоит из большого числа различных видов камней, перемешанных так, что если бы вы разрезали гору где-нибудь, то эти две части отличались бы друг от друга по их внутреннему строению. Монблан имеет гетерогенную структуру, какой не обладает бланманже, но это всё ещё не сложность в том смысле, в каком этот термин использует биолог.


Давайте попытаемся подойти с другой стороны к теме определения сложности и применим математическое понятие вероятности. Рассмотрим следующее определение: сложный объект — это нечто, составные части которого устроены так, что этот объект вряд ли мог возникнуть по воле одного счастливого случая. Воспользуемся аналогией одного знаменитого астронома: если вы возьмёте детали воздушного лайнера и будете хаотично соединять их наугад, то вероятность того, что соберёте работоспособный Боинг исчезающе мала. Существуют миллиарды возможных комбинаций, сочетающих части воздушного лайнера, и только одна, или очень немногие из них, будут в самом деле воздушным лайнером. Комбинаций, которыми можно было бы сочетать различные части человеческого тела намного больше!


Этот подход к определению понятия сложности перспективен, но тем не менее необходимо ещё кое-что. Имеются миллиарды вариантов соединения воедино частей Монблана, и можно утверждать, что только один из них — наш Монблан. Так что же делает воздушный лайнер и человека сложными, если Монблан прост? Любая однажды собранная коллекция частей уникальна, и ретроспективно столь же невероятна, как и любая другая. Куча самолётных фрагментов на свалке уникальна. Любые две такие кучи отличны друг от друга. Если вы начнёте хаотично собирать фрагменты самолетов в кучи, то шансы на то, что одна такая куча будет точно такой же, как и другая, примерно столь же низки, как шансы собрать таким образом работоспособный воздушный лайнер. Так почему бы нам не утверждать, что свалка, Монблан или луна есть столь же сложные объекты, как самолет или собака, раз уж во всех этих случаях расположение атомов «невероятно»?


Кодовый замок на моём велосипеде имеет 4096 различных комбинаций. Любая из них одинаково «невероятна» в том смысле, что если вы будете вращать колёсики случайным образом, то каждая из этих 4096 комбинаций вряд ли повторится. Я могу хаотично вращать колёсики, глядеть на любую из получившихся комбинаций и восхищённо восклицать: «Поразительно! Шанс на появление именно этого числа — один из 4096! Прямо маленькое чудо!». На тех же самых основаниях можно трактовать специфическое расположение камней в горе или кусков металла в куче отходов, как признаки «сложности». Но одна из этих 4096 комбинаций колёсиков в самом деле уникальна: комбинация 1207 — единственная комбинация, открывающая замок. Уникальность комбинации 1207 не имеет ничего общего с ретроспективностью — она была заранее задана изготовителем. Если вы принялись вращать колёсики наугад, и оказалось, что вы сразу попали на 1207 и получили возможность украсть велосипед, то это действительно было бы похоже на маленькое чудо. Если на вас снизошла неожиданная удача, и вы набрали одну из многозначных комбинаций кодового замка банковского сейфа, то это бы выглядело очень большим чудом, так как шанс этого события — один из многих миллионов, и вы бы получили возможность украсть целое состояние.


Теперь, пользуясь как аналогией попаданием на единственный номер, открывающий банковский сейф, будем беспорядочно сваливать в кучу металлолом, валяющийся вокруг нас, и случайно соберём Боинг 747. Из всех миллионов уникальных и ретроспективно одинаково невероятных комбинаций кодового замка замок открывает только одна. Точно так же, из всех миллионов уникальных и ретроспективно одинаково невероятных сочетаний кучи хлама только одна (или очень немногие) будут летать. Уникальность комбинации, способной летать или открывать сейф, никак не является ретроспективной. Наоборот, она определена заранее. Изготовитель замка установил открывающую комбинацию и сообщил её менеджеру банка. Способность летать — это свойство воздушного лайнера, которую мы определяем заранее. Если мы видим в воздухе самолет, то мы можем быть уверены в том, что он не был собран посредством беспорядочного соединения металлолома воедино, так как мы знаем — шансы на случайную сборку чего-то, способного летать, слишком низки.


Теперь, если рассмотреть все возможные варианты сваливания воедино камней Монблана, мы можем сказать: да, верно только один из них является Монбланом — таким, каким мы его знаем. Но наш Монблан был определён ретроспективно. Любой из очень многих вариантов сборки камней воедино может быть назван горой и мог бы быть назван Монбланом. Нет ничего особенного в том конкретном Монблане, который мы знаем, ничто в нём не предусмотрено заранее, ничего эквивалентного взлетающему самолёту или открывающейся дверце сейфа с деньгами, с кувырканием вылетающим вслед за ней.


В чём может выражаться сходство открывающейся дверцы сейфа или полёта самолета, с живым телом? Знаете, иногда это сходство почти буквально. Ласточки летают. Мы видели, как нелегко слепить из случайных частей летающую машину. Если бы вы взяли все клетки ласточки и слепляли бы их наугад, то шанс на то, что получившийся объект мог летать, практически не отличался бы от нуля. Не все живые существа летают, но они делают другие невероятные вещи, невероятные в смысле их предзаданности. Киты не летают — они плавают, и плавают так же эффективно, как летают ласточки. Шансы на то, что случайное скопление клеток кита плавало бы, уж не говоря о плавании столь же быстром и эффективном как у настоящего кита, ничтожны.


А вот здесь какой-нибудь философ с орлиным зрением (у орла очень зоркие глаза — вы не смогли бы сделать глаз ястреба, хаотично смешивая вместе хрусталики и ретиноциты!), начнёт бормотать что-нибудь насчёт циркулярного аргумента[1]. Ласточки летают, но не плавают; киты плавают, но не летают. Мы ретроспективно оцениваем успех нашей случайной конгломерации как пловца или как лётчика. Предположим, что мы соглашаемся оценивать его успех как X, оставляя открытым вопрос о том, что именно означает этот X, пока мы не попытались соединить клетки вместе. Наша случайная глыба клеток может оказаться эффективным роющим животным — типа крота, или эффективным лазателем — типа обезьяны. Она могла бы быть очень хороша в виндсерфинге, в выжимании промасляной ветоши или в ходьбе по сходящейся в ноль спирали… Список можно продолжать бесконечно…или нельзя?


Если бы список действительно можно было продолжать бесконечно, то мой гипотетический философ был бы прав. Если, вне зависимости от того, насколько беспорядочно вы разбросали материю где-то, получившуюся конгломерацию можно будет ретроспективно назвать подходящей для чего-нибудь, тогда было бы правомерно утверждать, что я жульничал насчёт ласточки и кита. Но у биологов имеется намного более конкретный взгляд на проблему, чем абстрактное утверждение о «полезности для чего-нибудь». Чтобы признать объект животным или растением, мы должны как минимум потребовать, чтобы оно преуспело в той или иной борьбе за существование (точнее — этот объект или, как минимум — некоторые члены его вида, должны жить достаточно долго, чтобы суметь размножиться). Верно — существует множество способов быть живым — полёт, плавание, раскачивание на деревьях и так далее. Однако, как бы ни было много способов быть живым, без сомнения имеется неизмермо больше способов быть мёртвым или скорее неживым, чем живым. Вы можете снова и снова смешивать клетки наугад в течение миллиарда лет и не раз будете получать конгломерацию, которае летает, или плавает, или роет норы, или бегает, или делает что-нибудь (хотя бы очень плохо), что можно было бы с какой-то натяжкой трактовать как деятельность по поддержанию жизни. В этот вопрос можно было бы углубляться весьма долго, но сейчас самое время напомнить себе, с чего мы начали. Мы искали способ точно выразить то, что мы подразумеваем, когда ссылаемся на нечто, как на сложный объект. Мы пытались точно выяснить, что именно люди, кроты, дождевые черви, воздушные лайнеры и часы имеют общего друг с другом, чего они не имеют с бланманже, Монбланом или луной. И мы пришли к выводу, что сложные объекты обладают неким качеством, заранее предопределённым, которое с крайне малой вероятностью могло быть приобретено благодаря одиночному случайному событию. В случае живого существа, это определённое заранее качество можно в некотором смысле назвать «мастерством»; любое мастерство в конкретной способности — такой как полёт, которым авиаконструктор мог бы восхищаться; или мастерство в кое-чём более общем, таком, как способность избегать смерти или способность распространять свои гены в ходе размножения.


Предотвращение смерти — это цель, над достижением которой требуется работать. Тело, предоставленное самому себе — что происходит после его смерти — стремится вернуться к состоянию равновесия с окружающей его средой. Если вы измерите какой-нибудь параметр — такой, как температуру, кислотность, содержание воды или электрический потенциал в живом теле, то чаще всего вы обнаружите его заметное отличие от соответствующего значения в окружающей среде. Например, наши тела обычно теплее окружающей нас среды, и в холодном климате им приходится упорно работать над поддержанием этой разности. Когда мы умираем, эта работа останавливается, разность температур начинает исчезать, и мы в конце концов обретаем ту же температуру, что и наша среда. Не все животные так же усердно трудятся над избежанием выравнивания температуры своего тела с внешней температурой, но все животные проделывают некую сопоставимую работу. К примеру, в сухом климате животные и растения трудятся над сохранением содержания жидкости в своих клетках, действуя против естественной тенденции воды утекать от них в сухой внешний мир. И если они терпят неудачу в этой деятельности, то они умирают. И вообще, живые существа, не проявляющие активности по предотвращению этого выравнивания, в конечном счёте сливаются со своей средой и прекращают существование как автономные сущности. Именно это происходит, когда они умирают.


За исключением искусственных механизмов, которых мы уже согласились расценивать некими почётными живыми существами, неживые объекты не активны в этом смысле. Они не сопротивляются силам, которые стремятся привести их в равновесие с окружающей их средой. Конечно, Монблан существует уже очень долго, и, вероятно, будет продолжать существовать ещё какое-то время, но он не делает ничего, чтобы продолжить своё существование. Когда камень приходит в состояние покоя под действием силы тяжести, то он в нём и остаётся. Никакой работы не требуется, чтобы продолжать его. Монблан существует и будет продолжать существование, пока эрозия не сотрёт его, или его не разрушит землетрясение. Он не предпринимает шагов по восстановлению износа или трещин или к восстановлению самого себя после разрушения — как раз того, что делают живые тела. Он лишь подчиняется простым законам физики.


Но следует ли из этого, что живые существа не подчиняются законам физики? Конечно, нет. Нет никаких причин полагать, что законы физики нарушаются в живой материи. Не существует ничего сверхествественного, никакой «жизненной силы», конкурирующей с фундаментальными физическими силами. Но если вы попытаетесь использовать законы физики в их банальной форме для понимания поведения всего живого тела, то вы скоро обнаружите, что продвинулись очень мало. Тело — сложный объект, состоящий из многих многокомпонентных частей, и чтобы понять его поведение, вы должны применить законы физики к этим частям, а не к целому. Тогда поведение всего тела проявится как следствие взаимодействия частей.


Возьмём, к примеру, законы движения. Если вы бросите мёртвую птицу в воздух, то она опишет изящную параболу, точно такую, какая должна быть по описаниям в книгах по физике, затем придёт в состояние покоя на земле и останется там. Она поведёт себя так, как должно вести себя твёрдое тело с данной массой и данным аэродинамическим сопротивлением. Но если вы бросите в воздух живую птицу, то она не будет описывать параболу и приходить в состояние покоя на земле. Она улетит и может не коснуться земли по эту сторону от границы графства. А всё потому, что у неё есть мышцы, работающие на противодействие силе тяжести и другим физическим силам, действующим на всё тело. Законам физики подчинется каждая мышечная клетка, в результате чего мышцы двигают крыльями таким образом, что птица остаётся в воздухе. Птица не нарушает закон всемирного тяготения. Её постоянно тянет вниз сила тяжести, но её крылья выполняют активную работу — повинуясь законам физики в своих мышцах — и поддерживают её в воздухе несмотря на силу тяжести. Нам будет казаться, что этот факт бросает вызов физическому закону только в том случае, если мы настолько наивны, что будем трактовать птицу просто как бесструктурную глыбу материи некоторой массы и аэродинамического сопротивления. Только когда мы осознаем, что она имеет множество внутренних частей, каждая из которых повинуется законам физики на своём уровне, то мы поймём поведение всего тела. Конечно, это особенность не только живых существ. Эти соображения применимы ко всем искусственным механизмам и, в принципе. применимы к любому сложному, многочастному объекту.


Так мы подходим к заключительной теме, которую я хочу обсудить в этой, скорее философской главе — проблеме того, что мы подразумеваем под объяснением. Мы выяснили, что следует считать сложной вещью. Но какое объяснение удовлетворит нас, если мы спросим, как действует сложный механизм или живое тело? Ответ на него мы дали в предыдущем абзаце. Если мы желаем понять, как действует механизм или живое тело, то мы рассматриваем его составные части и интересуемся, как они взаимодействуют друг с другом. Если некую сложную вещь мы ещё не понимаем, мы можем попробовать понять её в терминах более простых частей, работу которых мы уже понимаем.


Когда я спрашиваю инженера, как работает паровая машина, то я достаточно правомерно желаю получить общий ответ, который бы меня удовлетворил. Меня, как и Юлиана Хаксли, определённо не обрадует расплывчатое утверждение инженера про движение «силою пара». И если он начнёт занудные рассуждения о том, что целое — это больше, чем сумма слагающих его частей, я его, скорее всего, прерву: «Не углубляйтесь в философию — лучше скажите мне, как это работает». При этом я хотел бы услышать что-нибудь насчёт того, как детали двигателя взаимодействуют друг с другом, чтобы получилось наблюдаемое поведение всего двигателя. При этом я должен быть уже готов к восприятию объяснений в терминах весьма крупного блока, собственная внутренняя структура и поведение которого могли бы быть весьма сложны, и пока что не объяснены. Блоки, работу которых требовалось бы удовлетворительно объяснить в первую очередь, могли бы называться топкой, испарителем, цилиндром, поршнем, золотником. Инженер рассказал бы без предварительных объяснений, что делает каждый из блоков. Я принял бы его объяснения сразу, не расспрашивая далее, как именно этот блок делает свою специфическую работу. Зная, какую именно конкретную работу делают блоки, я смогу тогда понять, как они взаимодействуют, чтобы весь двигатель порождал энергию движения.


Конечно, я волен далее спросить, как работает каждая из деталей. Уже поняв тот факт, что золотник перекючает поток пара, и использовав это знание для понимании поведения всего двигателя, я теперь обращаю моё любопытство на сам золотник. Теперь я хочу понять, как он реализует своё собственное поведение — в терминах его внутренних деталей. То есть, имеется иерархия подблоков в пределах блоков. Можно объяснить поведение компонента на любом данном уровне, в понятиях его взаимодействий с другими подкомпонентами, собственную внутреннюю организацию которых на данный момент можно полагать как данность, некий «чёрный ящик». Мы расчищаем себе путь вниз иерархии, пока не достигаем блоков настолько простых, что более не ощущаем потребность (для наших текущих целей) задавать про них вопросы. Например, правильно это или нет, но большинство людей вполне удовлетворено свойством железных стержней быть твёрдыми; мы готовы использовать это свойство для объяснения более сложных машин, в конструкции которых они применяются.


Конечно, физики не воспринимают железные стержни как данность. Они задаются вопросом, почему они твёрдые, и продолжают расчищать иерархию ещё на несколько слоёв, до элементарных частиц и кварков. Но жизнь слишком коротка, чтобы многие из нас следовали их примеру. Для данного уровня организации сложности, удовлетворительного объяснения обычно можно достичь, углубляясь в иерархию вниз на один или два слоя от нашего исходного, не больше. Поведение автомобиля с двигателем внутреннего сгорания вполне объяснимо в терминах цилиндров, карбюраторов и свечей зажигания. Да, верно — каждый из этих компонентов находится вверху пирамиды объяснений более низких уровней. Но если вы спросите меня, как работает автомобиль, то вы сочтёте меня надменным снобом, если я отвечу вам на уровне законов Ньютона или законов термодинамики, и даже мракобесом, если я отвечу вам на уровне элементарных частиц. То, что в своей основе поведение автомобиля объясняется взаимодействиями между элементарными частицами, несомненно. Но намного полезнее объяснять его на уровне взаимодействий между поршнями, цилиндрами и свечами зажигания.


Поведение компьютера можно объяснять на уровне взаимодействий между полупроводниковыми электронными ключами, а их поведение, в свою очередь, физики объясняют на ещё более низких уровнях. Но в большинстве практических случаев вы бы просто впустую тратили время, если бы попытались понять поведение всего компьютера на любом из названных уровней. Электронных ключей слишком много, и слишком много соединений между ними. Удовлетвительное объяснение возможно лишь на уровне обозримо невеликого количества взаимодействий. Вот почему, когда мы хотим понять работу компьютера, мы предпочитаем обзорное объяснение на уровне примерно полудюжины основных блоков — оперативная память, процессор, долговременная память, блок управления, адаптеры ввода-вывода и т. д. После того, как мы поймём взаимодействие между полудюжиной основных компонентов, у нас может возникнуть желание задавать вопросы насчёт внутренней организации уже их самих. Вероятно, только инженеры узкой специализации углубятся до уровня схем «И» и «НЕ», и только физики углубятся далее, на уровень поведения электронов в кристалле полупроводника.


Люди, любящие приклеивать ярлыки «-измов», вероятно, назовут мой подход к пониманию работы чего-либо «иерархическим редукционизмом». Если вы читаете фешенебельные журналы для интеллектуалов, то вы, возможно, заметили, что «редукционизм» — это одно из тех понятий, которые (как, например, «грех») упоминают только люди, осуждающие его. Объявить себя редукционистом — это примерно то же, что признать себя людоедом (в определённых кругах, конечно). Но поскольку никто из нас не людоед, то никто из нас не является и настоящим редукционистом в каком-то веском смысле этого слова. Редукционист — это некто, которому все возражают, и кто существует только в воображении критиков. Этот мифический редукционист пытается объяснить сложные вещи прямо на уровне мельчайших частиц, и даже, в некоторых экстремальных версиях мифа, как сумму частей! С другой стороны — иерархический редукционизм объясняет сложную сущность на некотором конкретном уровне иерархии сложности, в терминах сущностей, лежащих только на один уровень ниже в иерархии; сущностей, которые сами по себе, вероятно, достаточно сложны, чтобы нуждаться далее в редукции до их собственных составных частей; и так далее. Это само собой разумеется — хотя мифический, людоедский редукционист имеет репутацию отрицателя того факта, что объяснения, адекватные на высоких уровнях в иерархии, весьма отличаются от объяснений, адекватных на низких. Именно это и имеется в виду, когда мы предпочитаем объяснение автомобиля на уровне карбюраторов, но не кварков. Но иерархический редукционист полагает, что карбюраторы можно объяснить в терминах меньших блоков…, которые объясняются в терминах ещё меньших…, которые в конечном счёте объясняются в терминах наименьших из элементарных частиц. Редукционизм, — в этом смысле, есть лишь другое название для честного желания понять, как что работает.


Мы начали этот подраздел вопросом о том, какое объяснение сложных вещей удовлетворило бы нас. Мы только что рассмотрели вопрос с точки зрения механизма: как это работает? Мы заключили, что поведение сложных объектов нужно объяснять в терминах взаимодействий между их составными частями, рассматриваемыми как последовательные слои иерархии. Но есть и вопрос другого вида — как сложная вещь впервые появилась. Этим вопросом вся наша книга интересуется особенно пристально, поэтому я не буду здесь об этом много говорить. Я лишь замечу, что здесь применяется тот же самый общий принцип, что и в понимании работы механизма. Сложная вещь — это вещь, существование которой мы не склонны полагать само собой разумеющимся, потому что она слишком «невероятна». Она не могла появиться в результате одного случайного события. Мы объясним её появление как результат постепенных, нарастающих, пошаговых преобразований более простых вещей, от изначального объекта, достаточно простого, чтобы он мог возникнуть случайно. Точно так же, как «редукционизм больших шагов» не работоспособен для объяснения работы механизма и должен быть заменён на серию маленьких пошаговых погружений вниз по иерархии, так мы не можем объяснить возникновение сложной вещи в единственном акте. Мы должны снова обратиться к серии мелких шагов, только уже разложенных последовательно во времени. Оксфордский физический химик Питер Аткинс свою красиво написанную книгу «Творение» начинает так:

Я возьму вашу мысль в путешествие. Это будет путешествие познания, путешествие на край пространства, времени и понимания. В нём я докажу, что в мире нет ничего, что невозможно понять, нет ничего, что было бы невозможно объяснить, и что всё в мире — необычно просто… много чего во Вселенной не нуждается в каком-то объяснении. Например, слоны. Раз уж молекулы научились конкурировать и создавать другие молекулы по своему образу и подобию, то слоны, и им подобные создания, неизбежно окажутся бродящим по саванне.

Аткинс принимает эволюцию сложных вещей (предмет нашей книги) неизбежной, раз уж создались соответствующие физические условия. Он интересуется, какими должны быть минимально необходимые физические условия, и каков должен быть минимум креативной деятельности очень ленивого творца, чтобы увидеть эту Вселенную, и позже — как однажды появились слоны и другие сложные вещи. Его ответ, ответ учёного-физика состоит в том, Творец мог бы быть абсолютно ленив. Чтобы понять начало существования всего сущего, нам необходимо постулировать некие фундаментальные первозданные единицы, представляющие собой или (по мнению некоторых физиков) буквально ничто, или (по мнению других физиков) единицы предельно простые — настолько, чтобы не нуждаться в чём-то столь грандиозном, как преднамеренное творение. Аткинс утверждает, что слоны и другие сложные вещи не нуждаются в каком-то объяснении. Но он говорит это потому, что он — учёный-физик, полагающий эволюционную теорию биологов данностью, не нуждающейся в доказательствах. На деле он не думает, что появление слонов не нуждается в объяснении, но имеет в виду, что он удовлетворён объяснениями биологов, которые могут объяснить происхождение слонов, если им дозволено использовать некоторые физические факты как данность. Его задача как физика, следовательно состоит в том, чтобы доказать законность использования этих фактов как данностей. И ему это удаётся. Моя позиция дополняет его позицию. Я — биолог. Я использую физические факты, факты изначальной простоты мира, как данность. Если меж физиками нет согласия о том, достаточно ли поняты те простые факты, то это не моя проблема. Моя задача состоит в объяснении существования слонов, и мира других сложных вещей, в терминах простых данностей, которые физики или уже понимают, или работают над выяснением. Проблема физиков — проблема происхождения первозданных сущностей и базовых законов природы. Проблема биолога — проблема сложности. Биолог старается объяснять функционирование и появление сложных вещей в понятиях вещей более простых. Он может считать свою задачу выполненной, когда он дошёл до объектов настолько простых, что их можно благополучно передавать физикам.


Я осознаю, что моя характеризация сложного объекта, как статистически невероятного в заранее заданном направлении, может выглядеть только моей новацией. Аналогично может выглядеть моя характеризация физики, как изучающей простые объекты. Если вы предпочитаете какое-то другое определение сложности — на здоровье, я был бы счастлив использовать и ваше определение для дискуссии. Но что для меня принципиально — независимо от того, что мы хотим называть статистически-невероятным-в-заранее-заданном-направлении, это — важное свойство, нуждающееся в особых усилиях по объяснению. Это — как раз то свойство, которое характеризует биологические объекты в противопоставлении физическим. Объяснение, которое мы предложим, не должно противоречить законам физики. И в самом деле, оно использует законы физики и ничего кроме законов физики. Но оно трактует эти законы особым образом, который обычно не обсуждается в учебниках физики. Этот особый способ — способ Дарвина. Я вознакомлю вас с его сущностью в третьей главе под заголовком «Нарастающая селекция».


А пока я хочу взять пример с Пали и подчеркнуть величие проблемы, на объяснение которой мы осмелились, неимоверность биологической сложности, красоты и элегантности биологического замысла. Во второй главе расширенно обсуждается конкретный пример — ультразвуковой «радар» летучих мышей, открытый у них намного позже эпохи Пали. А здесь, в этой главе, я покажу иллюстрацию (рис. 1) (жаль, что у Пали не было электронного микроскопа! Он бы ему понравился) глаза с двумя последовательными увеличенными детализациями. В верхней части рисунка — разрез самого глаза. Этот уровень увеличения показывает глаз оптическим прибором — подобие его фотокамере очевидно. Ирисовая диафрагма отвечает за постоянное изменение апертуры (входного отверстия).

Рис. 1

Хрусталик, являющийся только частью сложной оптической системы глаза, отвечает за переменную часть фокусировки. Фокус меняется посредством сжатия хрусталика мышцами (у хамелеонов мышцы перемещают хрусталик вперёд или назад, совсем как в нашей фотокамере). Изображение рисуется на сетчатке, находящейся на задней стенке глаза, где оно воздействует на светочувствительные клетки.


В средней части рисунка 1 увеличенно показана маленькая секция сетчатки. Свет падает слева. Светочувствительные клетки находятся не на поверхности сетчатки, а заглублены в толщу тканей в ней и прикрыты от света. Об этой странной особенности я упомяну позже ещё раз. Путь света сначала проходит через слой клеток ганглиев, которые являются «электронным интерфейсом» между светочувствительными клетками и мозгом. Клетки ганглия ответствены за хитроумную предварительную обработку информации до её передачи в мозг, и поэтому слово «интерфейс» применительно к ним не вполне справедливо. Обозначение «периферийный компьютер» — было бы по отношению к ним правильнее. «Провода» от клеток ганглия, проходящие по поверхности сетчатки к «слепому пятну», где они проходят сквозь неё, формируют «магистральный кабель» в мозг — зрительный нерв. В сетчатке имеется около трёх миллионов клеток ганглия в «электронном интерфейсе», собирющем данные с примерно 125 миллионов светочувствительных клеток.


В нижней части рисунка — одна светочувствительная клетка, палочка. Глядя на изящную архитектуру этой клетки, вспомните тот факт, что эта прекрасная сложность повторена 125 миллионов раз в каждой сетчатке. И сопоставимая сложность повторена триллионы раз в других местах всего тела. 125 миллионов светочувствительных клеток примерно в 5000 раз превышают количество раздельно различимых точек на журнальной фотографии хорошего качества. Сложенные мембраны в правой части показанной палочки — это собственно собирающие свет структуры. Их слоистое строение увеличивает эффективность поглощения фотонов, элементарных частиц — переносчиков света. Если фотон не пойман первой мембраной, он может быть пойман второй, и так далее. Поэтому некоторые глаза способны обнаружить единственный фотон. Самые светочувствительные эмульсии фотоплёнок, доступные фотографам, требуют примерно в 25 раз больше фотонов, чтобы детектировать световую точку. Объекты, похожие на таблетки в средней части клетки, это, главным образом митохондрии. Митохондрии есть не только в светочувствительных клетках, но и в большинстве других клеток тела. Каждую митохондрию можно сравнить с химической фабрикой, которая, вырабатывая энергию, годную для потребления другими структурами, перерабатывает более 700 различных химических субстанций на своих длинных, переплетённых «сборочных конвейерах», натянутых на поверхности её запутанно свёрнутых внутренних мембран. Круглый шарик в левой части рисунка 1 — ядро. Наличие клеточного ядра тоже характерно из всех животных и растительных клеток. Как мы увидим в главе 5, каждое ядро содержит большую, дискретно закодированную базу данных, объём информации в которой превышает таковой во всех 30 томах «Британской энциклопедии» вместе взятых. И это — для каждой клетки, а не всех клеток тела, вместе взятых!


Клетка-палочка в нижней части рисунка — это одна единственная клетка. Общее количество клеток в теле (человека) — примерно 10 триллионов. И когда вы кушаете бифштекс, вы разрушаете информацию, эквивалентную по объёму более чем 100 миллиардам копий «Британской энциклопедии».


Примечания:



1

  Т. е. аргумента, который сам доказывается ссылкой на доказываемый тезис, и так по кругу — А.П.









Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Наверх